Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Ken Sakai,* Norinobu Akiyama, Mina Mizota, Kazuo Yokokawa and Yoshimi Yokoyama

Department of Applied Chemistry, Faculty of Science, Tokyo University of Science,
Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan

Correspondence e-mail:
ksakai@rs.kagu.tus.ac.jp

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.014$
$w R$ factor $=0.034$
Data-to-parameter ratio $=9.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(guanidinium) bis(oxalato)platinate(II)

The title compound, $\left(\mathrm{CH}_{6} \mathrm{~N}_{3}\right)_{2}\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]$ or (guanidinium) $)_{2}$ $\left[\mathrm{Pt}(\mathrm{ox})_{2}\right] \quad(\mathrm{ox}=$ oxalate $)$, possesses an intriguing threedimensional hydrogen-bonding network in the crystal structure, where extensive hydrogen bonds are formed between $\mathrm{N}-\mathrm{H}$ (guanidinium) units and O atoms of oxalates $[\mathrm{N} \cdots \mathrm{O}=$ 2.913 (5)-3.197 (5) \AA A . The $\left[\mathrm{Pt}(\mathrm{ox})_{2}\right]^{2-}$ anions stack weakly in a one-dimensional manner, with an intermolecular $\mathrm{Pt} \cdots \mathrm{Pt}$ distance of 3.5876 (7) \AA. The Pt atom is located at an inversion centre.

Comment

For a long time we have been interested in one-dimensional systems consisting of dimers doubly bridged with amidate or carboxylate ligands (see, for example, Sakai, Tanaka et al., 1998; Sakai, Takeshita et al., 1998; Sakai et al., 2002). All the dimers used thus far have been cationic dimers with a general formula $\left[\mathrm{Pt}_{2} L_{4}(\mu \text {-bridge })_{2}\right]^{2+}\left[L_{2}=\left(\mathrm{NH}_{3}\right)_{2}\right.$, ethylenediamine, $2,2^{\prime}$-bipyridine, 1,10 -phenanthroline, etc.; bridge $=$ acetamidate, pivalamidate, acetate, benzoate, etc.]. In this context, attempts have been made to prepare a $\operatorname{Pt}(o x)$ dimer, doubly bridged by guanidinate ligands, $\left[\mathrm{Pt}_{2}(\mathrm{ox})_{2}(\mu \text {-guanidinato })_{2}\right]^{2-}$. However, the preparation of such anionic dimers has, so far, been unsuccessful. Here we report the crystal structure of the title compound, which was obtained as a by-product in these studies.

(I)

The asymmetric unit of (I) consists of a half unit of the formula (Fig. 1). The Pt atom is located at an inversion centre and therefore the coordination around it has a planar coordination geometry. The $\left[\mathrm{Pt}(\mathrm{ox})_{2}\right]^{2-}$ anion exhibits a distorted square-planar stereochemistry, due to the structural restraint arising from the chelating oxalates (see Table 1).

As shown in Fig. 2, the crystal packing of (I) is stabilized by extensive hydrogen bonds formed between guanidinium cations and O atoms of the oxalates (see also Table 2). Fig. $2 b$ shows that the $\left[\operatorname{Pt}(\mathrm{ox})_{2}\right]^{2-}$ anions stack along the a axis, where the $\mathrm{Pt} 1 \cdots \mathrm{Pt} 1^{\mathrm{i}}$ [symmetry code: (i) $1-x, 1-y, 1-z$] vector is canted by $c a .22^{\circ}$ with respect to the orthogonal vector of the mean plane defined by the four coordinated O atoms. The intermolecular $\mathrm{Pt} \cdots \mathrm{Pt}$ distance $[3.5876$ (7) \AA] is much longer than those reported for partially oxidized analogs $(\mathrm{Pt} \cdots \mathrm{Pt}=$

Received 20 May 2003
Accepted 28 May 2003
Online 10 June 2003

Figure 1
The structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Crystal packing view of (I), showing the hydrogen-bonding network: (a) along the a axis and (b) along the c axis.
2.717-2.876 Å; Miller, 1982), consistent with our assignment of oxidation level $\mathrm{Pt}^{\mathrm{II}}$ for (I). However, the deep green color of (I) implies that metal-metal interactions are to some extent promoted in (I). Examples of other $\mathrm{Pt}^{\mathrm{II}}$ compounds are as follows: $\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{Ox})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{Pt} \cdots \mathrm{Pt}>8 \AA$, Mattes \& Krogmann, 1964; $\left[\mathrm{Cu}(\mathrm{en})_{2}\right]\left[\mathrm{Pt}(\mathrm{ox})_{2}\right](\mathrm{Pt} \cdots \mathrm{Pt}=3.554$ and $3.855 \AA$ A, Bekaroglu et al., 1976; $\mathrm{Ca}\left[\mathrm{Pt}(\mathrm{ox})_{2}\right] \cdot 3.5 \mathrm{H}_{2} \mathrm{O}(\mathrm{Pt} \cdots \mathrm{Pt}=3.18 \AA$, Krogmann, 1968).

Experimental

A solution of $\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{ox})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.20 \mathrm{mmol}, 0.098 \mathrm{~g}$; Werner \& Grebe, 1899) and guanidine carbonate ($0.20 \mathrm{mmol}, 0.024 \mathrm{~g}$) in water $(5 \mathrm{ml})$ was refluxed for 3 h , during which the solution became dark green and a small amount of black precipitate deposited. The solution was then filtered while it was hot. Allowing the filtrate to stand at room temperature overnight afforded (I) as dark-green needles, which were collected by filtration and air-dried (yield: 30%). Analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{Pt}$: C 14.86, H 2.31, N 16.97%; found: C 14.67, H 2.46 , N 17.11%.

Crystal data

$\left(\mathrm{CH}_{6} \mathrm{~N}_{3}\right)_{2}\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]$
$M_{r}=491.31$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=3.5876$ (7) A
$b=14.684$ (3) \AA
$c=12.237$ (2) \AA
$\beta=94.686(3)^{\circ}$
$V=642.5(2) \AA^{3}$
$Z=2$

Data collection

Bruker SMART APEX CCD
detector diffractometer
ω scans
Absorption correction: Gaussian
(XPREP in SAINT; Bruker,
2001)
$T_{\text {min }}=0.288, T_{\text {max }}=0.675$
2782 measured reflections
911 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.015$
$w R\left(F^{2}\right)=0.034$
$S=0.94$
911 reflections
97 parameters
$D_{x}=2.540 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1567 reflections
$\theta=2.8-23.3^{\circ}$
$\mu=10.97 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Prism, dark green
$0.15 \times 0.15 \times 0.04 \mathrm{~mm}$

685 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=23.3^{\circ}$
$h=-3 \rightarrow 3$
$k=-15 \rightarrow 16$
$l=-12 \rightarrow 13$
58 standard reflections frequency: 330 min intensity decay: 0.2%

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Pt} 1-\mathrm{O} 1$	$2.016(3)$	$\mathrm{Pt} 1-\mathrm{Pt}^{\mathrm{i}}$	$3.5876(7)$
$\mathrm{Pt} 1-\mathrm{O} 2$	$2.009(3)$		
$\mathrm{O} 2-\mathrm{Pt} 1-\mathrm{O} 1$	$82.52(12)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Pt} 1-\mathrm{O} 1$	$97.48(12)$

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	0.86	2.39	$3.120(5)$	143
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots 3^{\text {iii }}$	0.86	2.49	$3.197(5)$	139
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 4^{\text {iii }}$	0.86	2.21	$2.969(4)$	147
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 4^{\text {iii }}$	0.86	2.21	$2.971(5)$	147
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots 3^{\text {iv }}$	0.86	2.40	$3.106(5)$	139
$\mathrm{~N} 3-\mathrm{H} 3 B \cdots 3^{\text {iv }}$	0.86	2.15	$2.913(5)$	148
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{O}^{\text {ii }}$	0.86	2.11	$2.944(5)$	164

Symmetry codes: (ii) $-x, 1-y, 1-z$; (iii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iv) $x, \frac{1}{2}-y, \frac{1}{2}+z$.
All H atoms of the guanidinium ion were positioned geometrically as riding atoms $(\mathrm{N}-\mathrm{H}=0.86 \AA)$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: KENX (Sakai, 2002); software used to prepare material for publication: SHELXL97, TEXSAN (Molecular Structure Corporation, 2001), KENX and ORTEPII (Johnson, 1976).

This work was partly supported by a Grant-in-Aid for Scientific Research (No. 14340223) from the Ministry of Education, Science, Sports, and Culture of Japan.

References

Bekaroglu, Ö., El Sharif, M., Endres, H. \& Keller, H. J. (1976). Acta Cryst. B32, 2983-2986.
Bruker (2001). SAINT (Version 6.22) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Krogmann, K. (1968). Z. Naturforsch. Teil B, 23, 1012-1012.
Mattes, R. \& Krogmann, K. (1964). Z. Anorg. Allg. Chem. 332, 247-256.
Miller, J. S. (1982). Editor. Extended Linear Chain Compounds. New York: Plenum Press.
Molecular Structure Corporation (2001). TEXSAN. Version 1.11r1. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Sakai, K. (2002). KENX. GUI for SHELXL97. Tokyo University of Science, Japan.
Sakai, K., Ishigami, E., Konno, Y., Kajiwara, T. \& Ito, T. (2002). J. Am. Chem. Soc. 124, 12088-12089.
Sakai, K., Takeshita, M., Tanaka, Y., Ue, T., Yanagisawa, M., Kosaka, M., Tsubomura, T., Ato, M. \& Nakano, T. (1998). J. Am. Chem. Soc. 120, 1135311363.

Sakai, K., Tanaka, Y., Tsuchiya, Y., Hirata, K., Tsubomura, T., Iijima, S. \& Bhattacharjee, A. (1998). J. Am. Chem. Soc. 120, 8366-8379.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Werner, A. \& Grebe, E. (1899). Z. Anorg. Chem. 21, 377-379.

